
UML and the Cost of Defects 

Stephen J Mellor 

stephen_mellor@mentor.com 

 

It is common knowledge that software defects, especially in embedded systems, are expensive to 
repair; less well appreciated is just how very expensive it is, especially for requirements defects.  
This paper outlines these costs and how they depend on the development process.  We describe 
three approaches to software development starting with UML models, add verification through 
execution, then add translation, and examine how each affects the cost of defect repair. 

Costs 
The Software Engineering Institute estimates that defects are injected, per hour worked, at these 
percentages in the lifecycle: 7% during requirements, 7% during high-level design, 21% detailed 
design, 55% coding, and 10% thereafter. 

Barry Boehm [1] showed that the cost to repair an error, increases exponentially the later it is 
found.  The stages of the lifecycle differ from those of the SEI; moreover, costs differ according 
to the size of the project.  Extrapolating across the missing phases, we assume here a doubling for 
each stage that an error persists.   

The table below combines the data from Boehm and the SEI.  The first data row copies the SEI 
data above; the second shows the relative cost to fix the error, derived by doubling the cost for 
each of five phases, moving backwards from deployment; the third multiplies the two together to 
arrive at some absolute cost.  The final row normalizes against the total of absolute costs (372) to 
arrive at the percentage of the total cost of rework for each type of error. 

 

Phase Requirements High-level 
Design 

Detailed  
Design 

Coding Test and 
Deployment 

Percentage 7% 7% 21% 55% 10% 

Relative Cost 16 8 4 2 1 

Absolute Cost 112 56 84 110 10 

Normalized 
Cost 

30% 15% 23% 30% 3% 

 

The table shows that 30% of defect repair time goes into fixing requirements errors, even though 
only 7% of the errors come from requirements.   

Standish Group reports (2000) that 60-80% of the cost of software development goes to rework, 
which seems a little high.  If we assume about 50%, then 15% of all project costs through initial 
deployment come from requirements errors alone!  It is therefore of some considerable value if 
these defects can be removed early. 



Development Processes 
To elucidate the cost of defects, we examine three approaches to software development.  First, we 
consider a process in which we build a UML-based specification, then code from that.  Second, 
we build an executable model, verify that the behavior is as desired, then write code from that.  
Third, we consider the construction of an executable model that is translated into code. 

Documentation and Visualization 
Many people use UML models for documentation and visualization purposes.  At the beginning, 
requirements are exposed and discussed with clients and experts; defects are found and fixed.  
The models are then grown organically to describe the high-level design.  Changes are sometimes 
made to the requirements—both deliberately and inadvertently—as design issues come to the fore.  
In turn, more detail is added to capture the detailed design.  At some point, victory is declared and 
code is written. 

Execution 
Execution is the idea that we can describe the behavior of a system without describing its 
implementation.  This is achieved by defining a UML-based language that thinks in terms of sets 
of data and communicating state machines.  The sets of data can be implemented by lists, arrays, 
trees or whatever, and the communicating state machines can be implemented in tasks, processors, 
hardware, or even sequentially.  The model can execute, but its implementation is (initially) 
unstated, just as a statement such as x = y; can execute, even though it does not specify the 
implementation in terms of registers and memory.  See [2] for details of the language. 

The language abstracts away details of data structure, tasking structure, and control structure, just 
as third-generation languages abstract away details of register and memory allocation.   

Translation 
An executable model can be translated into an implementation using a model compiler, which 
consists simply in a set of rules.  For example, there may be a rule that transforms sets of data into 
lists or arrays, and another rule that allocates state machines to tasks and processors, along with 
the infrastructure code required for communication.  This code will be regular and uniform across 
the entire application. 

Model compilers add in this information depending on the type of system to be built.  The code 
generated for an embedded system, for example, would be different from real-time transaction 
processing, or an IT system. 

Cost Reduction 

Documentation and Visualization 
The data quoted in the first section comes from a variety of sources spread over thirty years, from 
around the beginning of structured analysis and design to the forefathers of UML.  We assume 
that a textual requirements specification, supported by some informal graphics such as SA/SD, is 
the basis for the data shown above. 

It would be uncharitable to conclude that UML has had no effect on reducing defects, though 
there is little supporting data.  Given the nature of UML, one would certainly expect to see 
reductions in requirements defects, in high-level design defects, and—since UML is often used to 
visualize software structure—detailed design.  UML does not help directly with coding, testing 
and initial deployment. 



The first row of the table below shows the normalized cost from the table in the first section.  The 
second row is my (generous?) assessment of how much using UML for documentation and 
visualization can help with defect reduction.  The final row applies those assumptions to arrive at 
a revised normalized cost for defect reduction using this approach. 

 

Phase Requirements High-level 
Design 

Detailed  
Design 

Coding Test and 
Deployment 

Normalized 
Cost 

30% 15% 23% 30% 3% 

Defect 
Reduction 

A third A third A half None None 

Revised Cost 20% 10% 12% 30% 3% 

 

The total is 75%.  In other words, under these assumptions, using UML reduces the costs of 
rework of defects by 25%.  Continuing with a 50% total cost of rework estimate yields a 12.5% 
reduction in total project cost through initial deployment. 

Execution 
A UML specification without execution can only be defended by argument or exhaustion—one 
cannot know it is correct until it executes.   However, a (partial) executable model, because it has 
an execution semantics, can be run with real data, and the results passed back to customers and 
marketing, thus providing immediate feedback.  Defects can be repaired at the beginning of the 
project instead of waiting for the first system build.   

Most defects in requirements can therefore be eliminated during the requirements phase, and the 
cost of reworking them too.  There is also a cost to building the scenarios to run the model, which 
is equivalent to the work involved in the construction of unit tests, except that it occurs earlier in 
the lifecycle.  Design proceeds exactly as before.  When coding, the results of units tests can be 
compared to those run and the model, and any defects can be repaired then and there. 

The second row below records these assumptions.  The last row in the table once again shows the 
reduced cost.  The total is 50% for the total cost of rework caused by defects, which is 25% of 
total project cost. 

 

Phase Requirements High-level 
Design 

Detailed  
Design 

Coding Test and 
Deployment 

Normalized 
Cost 

30% 15% 23% 30% 3% 

Defect 
Reduction 

Most A third A half A third None 

Revised Cost 5% 10% 12% 20% 3% 

 



Translation 
When hand coding, design decisions are smeared across the system as each developer makes 
isolated “creative” choices that do not necessarily (more exactly, hardly ever) integrate properly.  
It is this that is the cause of the majority of the 21% of detailed design errors, and a good number 
of the high-level design errors too.  In theory, it is possible to describe the system architecture and 
demand that coders follow it.  In practice, such documents are rarely more than high-level 
guidelines, and, without enforcement, are rarely followed completely.   

Enforcement can be had through automation.  Rather than hoping that programmers follow a set 
of rules, we can formalize these rules and apply them automatically to the executable model to 
produce the code for the system.  This is the model compiler; it houses the system design and 
provides automatic translation rules from an executable model to code. 

A project using translation requires an executable specification.  Hence, the project  will derive 
the benefits from defect reduction during requirements, as described above.   

High-level design errors are limited to whether you chose the correct class of model compiler.  
For example, a fundamentally periodic application would not benefit from a completely 
asynchronous, event-driven high-level design (and vice versa.). 

Detailed design errors will be slashed, and often eliminated completely.  If the model compiler 
yields an implementation that meets all performance requirements, then the design work is 
complete.  If not, then new rules must be written.  To test the new rules, compare the output to 
that from a known-to-be-correct model compiler.  Behaviorally, they must be the same, though 
their performance may differ. 

There will be no coding errors, none, because an out-of-the-box the model compiler will generate 
correct code, just as a programming language compiler may be expected to generate correct code.   

This code will be regular and uniform across the entire application, and it reduces to zero the 
defects that can be introduced by hand translation.   

 

Phase Requirements High-level 
Design 

Detailed  
Design 

Coding Test and 
Deployment 

Normalized 
Cost 

30% 15% 23% 30% 3% 

Defect 
Reduction 

Most Most Most All All 

Revised Cost 5% 5% 5% 0% 0% 

 

UML and the Cost of Defects 
Let’s face it: There’s more precision than accuracy in this paper.  The figures we do have are 
based on incomplete definitions and unknown premises.  Moreover, the word “assume” makes 
more appearances than is comfortable for this engineer.  Nonetheless the overall pattern is clear:  
defects are expensive to remove; they are much more expensive when they occur early in the 
lifecycle; and the development process has a large effect on these figures—even if they are 
guesses. 

The table (over) summarize the results.   



Phase Cost of Rework Cost in Project 

Original Cost 100% 50% 

Documentation and  
Visualization 

75% 37.5% 

Execution 50% 25% 

Translation 15% 7.5% 

 

In other words, using UML for documentation and visualization can reduce the cost of rework by 
25%; using executable UML models can reduce the cost of rework by 50%; using translation can 
reduce the cost of rework by 85%.  If half of project time is spent on rework, that comes to 12.5%, 
25% and 42.5% reductions in total project costs. 

While the numbers might not be as accurate as we would like, it is worth remembering Boehm’s 
result that the same error, if found in operation, can cost over 100 times more to fix—and that 
excludes the reputation risk of, say, an automobile or medical device that fails while in the hands, 
or heart, of the consumer.   

 

 

[1] Boehm and Basili, Software Defect Reduction Top Ten List.  Computer Vol. 34, January 
2001 

[2] Executable UML: A Foundation for Model-Driven Architecture, Mellor and Balcer, 
Addison-Wesley, 2002. 

 


